Nutrition and Trauma

Jodie R. Orwig, RDN, LDN
In the first 12–24 hours post injury, the #1 goal is stabilizing the patient, not nutrition.
Goal #2 is surgery, as indicated, to correct the injury.
In the Critical Care Unit

Preservation of organ function

Nutrition???
What Route is best for Nutrition?

Every case is unique and depends on the nature of the injury...

1. **Oral**—preferred choice
2. **Tube Feeding**—"If the gut works, use it"
3. **Parenteral**—Impaired GI function

Or

A Combination of the above
Enteral vs. Parenteral Nutrition

- PN indicated if malnutrition present and EN not feasible; if no malnutrition, delay PN for the first 5–7 days
- EN is the preferred route of feeding compared to parenteral nutrition (PN) for the critically ill patient requiring nutrition support (grade B)
 - Reduces infectious morbidity
 - Related to fewer septic complications
 - Prevents atrophy of intestinal villi
 - Maintains gut mucosal barrier–discouraging bacterial translocation

The gut is the largest immune organ in the body

2016 Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: SCCM and A.S.P.E.N.
How much Nutrition Support to provide to Trauma patient?

- **Energy** and **protein** needs are increased in trauma to prevent muscle catabolism

- **Protein**: 1.5–2gm/kg

- **Calorie**: Dietitians use predictive equations or a metabolic cart can be used for determining calorie needs
Is my patient getting enough?

- Weight status
- Wound healing
- Nitrogen balance study
Hypermetabolic Response to Stress– Causes

Comparison of normal, starved, stress states

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Starved</th>
<th>Stressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic rate*</td>
<td>No change</td>
<td>Reduced</td>
<td>Increased</td>
</tr>
<tr>
<td>Fuel mixture for</td>
<td>Carbohydrate and lipid</td>
<td>Lipids</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>No change</td>
<td>Preserved</td>
<td>Used for gluconeogenesis</td>
</tr>
</tbody>
</table>

Metabolic rate is a function of physical activity requirements and body composition
Hypermetabolic Response to Stress—Pathophysiology

EBB PHASE
- Hypovolemia
- Shock
- Tissue hypoxia
- **DECREASED:**
 - Cardiac output
 - \(O_2 \) consumption
 - Body temperature

FLOW PHASE
- Acute phase proteins
- Hormonal responses
- Immune responses (cell-mediated and antibody)
- **INCREASED:**
 - Cardiac output
 - \(O_2 \) consumption
 - Body temperature
 - Energy expenditure
 - Protein catabolism

Nutrition Management

- Minimize Protein Catabolism
- Physical Therapy/Exercise
- Plan Nutrition Therapy (oral, enteral, and/or parenteral)
Early Enteral Nutrition

- Feedings started within 24–48 hours following hypermetabolic injury
 - associated with less gut permeability
 - decreased activation and release of inflammatory cytokines (CRP levels)

2016 Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: SCCM and A.S.P.E.N.

Complications of overfeeding and underfeeding

Overfeeding
- Azotemia
- Hepatic steatosis
- Hypercapnia, which may lead to prolonged weaning from mechanical ventilation
- Hyperglycemia
- Hyperlipidemia
- Fluid overload

Underfeeding
- Loss of lean body mass (muscle wasting), including cardiac and respiratory muscles
- Prolonged weaning from mechanical ventilation
- Delayed wound healing
- Impaired host defenses
- Increased nosocomial infections

Effects of Propofol

- Needs to be included in the nutrient intake evaluation as it provides 1.1 Kcal/ml

- If calories from propofol are overlooked, patient could be over fed

- If on PN, hold soy based lipids in the critically ill patient for the first week due immunosuppressive and pro-inflammatory factors of soy based lipids. New lipid formulations are on the horizon.

- SMOF lipids—soybean, MCT, olive and fish oil combination (less deterioration of liver enzymes and improved/reversal of intestinal failure–associated liver disease in multiple studies)
Clinical indications may include:

<table>
<thead>
<tr>
<th>Medical Condition</th>
<th>Clinical Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class III obesity (BMI > 40)</td>
<td>Sepsis with hemodynamic instability</td>
</tr>
<tr>
<td>Refeeding syndrome risk</td>
<td>Multiple organ dysfunction syndrome</td>
</tr>
<tr>
<td>Severe malnutrition</td>
<td>Persistent elevations in respiratory rate</td>
</tr>
<tr>
<td>Chronic obstructive respiratory disease (COPD)</td>
<td>Hypercapnia</td>
</tr>
<tr>
<td>Acute respiratory distress syndrome (ARDS)</td>
<td>Hyperglycemia</td>
</tr>
<tr>
<td>Systemic inflammatory response syndrome (SIRS)</td>
<td>Hypertriglyceridemia</td>
</tr>
</tbody>
</table>

Immune-modulating formulas should be used for the appropriate patient population (including trauma patients)—grade A

- Supplementation may include arginine, nucleotides and omega-3 fatty acids which support the immune system and help reduce infection, LOS and ventilator days in surgical and critically ill patients.
- In patients with severe sepsis use nutrition without specific immunomodulating supplementation (grade 2C)

Volume vs Rate based Tube Feedings

- Volume based results in patients better receiving their nutrient requirements
Monitoring Tolerance of EN

- Holding EN for gastric residual volumes < 500ml in the absence of other clinical signs of intolerance should be avoided (grade B)
 - Not always associated with pneumonia, measures of gastric emptying, or incidence of aspiration
 - May negatively affect patient outcome due to decreased volume of EN

Monitoring Tolerance of EN

- Indicators of Intolerance—nausea, vomiting, abdominal pain, abdominal distention, constipation, and/or diarrhea
- To aid with gastric motility, consider a prokinetic agent (metoclopramide/Reglan/erythromycin)
- Advance feeding tube into duodenum (post pyloric)
- Don’t forget bowel regimens
Bowel Regimens

- Constipation from pain medications, iron supplements, bed-bound
- Diarrhea from antibiotics, magnesium-containing antacids, sorbitol-containing elixirs, electrolyte supplements, bacterial colonic overgrowth and GI motility disorders
- Bowel regimen—stool softeners, laxatives, fiber, fluid
- Elemental/predigested formula
Case Study: Stress & Trauma

- Patient presents to ER with GSW to abdomen, resulting in an open abdomen
- OR–gastric resection and resection of jejunum, resulting in GI tract discontinuity
- Sent to Critical Care
40% of hospital patients are overtly malnourished on admission, 8% severely
Patient with GSW Nutrition Support progression

- TPN clear choice due to discontinuous GI tract coupled with malnutrition dx; start when patient stabilized
- Day 2 started small amount of EN (10cc/hr) in combination with the PN; used immune modulating formula due to trauma and surgery
- Goals: increase EN at tolerated, decrease TPN, meet energy and protein requirements, oral nutrition when appropriate
A multidisciplinary approach is vital in the care and treatment of a trauma patient.
TAKE HOME POINTS

- EARLY
- ENTERAL
QUESTIONS?
Nutrition Support—where to begin

- Method depends on multiple factors, including the nature of the patient’s injury, and whether or not oral intake is an option
- Patient’s lab values are normalizing and soon he can tolerate a small amount of enteral nutrition
Factors contributing to elevated energy needs

- Trauma and stress resulting from the GSW
- Corrective surgeries
- Fluid and electrolyte losses
- Anastomotic leak
Residuals

- Hold for gastric residual of $\geq 500\text{cc}$
Malnutrition – two “types” or conditions
- Simple starvation: inadequate nutrient supply
- Stress starvation: inability to utilize nutrients or when needs are so high that current intake can not meet demands

Body responds through physiological adaptations

How do you identify malnutrition?
- Nutrient intake prior to admission
- Physiologic changes that impair nutrient digestion, absorption, utilization and/or requirements
- The word nutrient covers macronutrients as well as micronutrients
Metabolism Response to Starvation (Short Term)
No Injury or "Stress" (Protective Adaptation Occurs)

- Overall energy needs decrease
- Metabolic rate decreases 20-25 kcal/kg/d
- Energy from fat storage >90% of kcal
- Energy from protein <10% for gluconeogenesis
- Protein store protected

Lower metabolic rate
20–25 kcal/kg/d

Liver

Gluconeogenesis (10% kcal)

Gluconeogenesis from pyruvate

Energy Depot
Fat, Fatty Acid

90% kcal
Ketones

Energy Production

Energy for protein synthesis
To tissues

Lean Mass
Minimal catabolism to meet glucose needs

Micronutrients needed
Alanine
Amino Acids

Hormone adaptation preserves protein

Protein synthesis

Table 22.1 Comparison of Metabolism during Normal Nutritional States versus Starvation

<table>
<thead>
<tr>
<th>Normal Nutritional State</th>
<th>Starvation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic rate matches current physical activity requirements and body composition.</td>
<td>Decrease in metabolic rate to ensure conservation of energy.</td>
</tr>
<tr>
<td>Carbohydrate and lipid are efficiently metabolized sources of energy providing 55%-85%</td>
<td>Decreased need for glucose utilization.</td>
</tr>
<tr>
<td>of energy requirements.</td>
<td>Utilization of lipid as main source of energy.</td>
</tr>
<tr>
<td>Protein is used for maintenance of protein structures and to meet ongoing protein synthesis requirements.</td>
<td>Preservation of lean mass, minimizing protein loss.</td>
</tr>
</tbody>
</table>

Complications of Malnutrition

- Malnutrition is common among surgical patients
 - Increases the significance of complications, infections, length of stay, costs, and increased mortality
 - Can cause a loss of muscle and fat mass, reduced respiratory muscle and cardiac function, and atrophy of visceral organ

Complications of Malnutrition

- Impairs the body’s ability to have an effective immune response making infection harder to detect and treat
- Increases the risk of pressure ulcers, delays wound healing, increases infection risk, decreases nutrient intestinal absorption, alters thermoregulation and compromises renal function

Metabolic response to stress differs from the responses to starvation.

During periods of stress, the body goes into a hypermetabolic state in response to acute injury or disease.

Degree of metabolic stress correlates with seriousness of injury.
Sepsis

- Sepsis: systemic response to infection
- Severe Sepsis: presence of sepsis with one or more organ dysfunction
- Septic shock: presence of sepsis and hemodynamic instability

Table 22.3 Summary of Metabolic Abnormalities Observed in the Stress Response

- Increased levels of glucagon, cortisol, epinephrine, norepinephrine
- Hyperglycemia and insulin resistance
- Increased basal metabolic rate
- Increased rate of gluconeogenesis
- Catabolism of skeletal muscle
- Increased urinary nitrogen excretion—negative nitrogen balance
- Increased synthesis of positive acute-phase proteins—CRP, fibronectin, ceruloplasmin
- Decreased synthesis of negative acute-phase proteins—albumin, prealbumin

Stress—Medical and Nutritional Management

MEDICAL MANAGEMENT
- Treat cause of hypermetabolism
- Physical therapy
- Exercise

NUTRITIONAL MANAGEMENT
- Minimize catabolism
- Meet protein, energy and micronutrient needs
- Establish and maintain fluid and electrolyte balance
- Plan nutrition therapy (oral, enteral, and/or parenteral nutrition)

Nutrition management
 ◦ Goal is prevention of malnutrition and associated complications
 ◦ Consider status prior to illness, level of injury, current metabolic changes
Nutrition Therapy for Metabolic Stress

- Calorie provision
- Protein
 - Branched-chain amino acids
 - Glutamine: recommended for all burn, trauma, ICU
 - Arginine: caution should be used if utilized in patients with severe sepsis
- Vitamins, Minerals, Trace elements
- Carbohydrate
- Fat
Table 22.6 Possible Prediction Equations

Estimation of total energy requirements for the critically ill patient when indirect calorimetry is unavailable:

A.S.P.E.N. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Critically Ill Patient

- BMI >30: 22–25 kcal/kg ideal body weight

Mifflin-St. Jeor Equation

REE for females: \(10 W + 6.25 H - 5 \text{ Age} - 161\)

REE for males: \(10 W + 6.25 H - 5 \text{ Age} + 5\)

\([W = \text{ weight in kg}; H = \text{ height in cm}; \text{ Age} = \text{ age in years}]\)

American College of Chest Physicians Equation

REE = \(25 \times \text{ weight (kg)}\)

- If BMI = 16–25, use usual body weight; if BMI >25, use ideal body weight; and if BMI <16, use existing body weight for first 7–10 days, then use ideal body weight.

Penn State 2003 Equation

REE = \((0.85 \times \text{value from Harris-Benedict equation}) + (175 \times T_{\text{max}}) + (33 \times V_e) - 6,443\)

\([V_e = \text{ minute volume (in L/min)}; T_{\text{max}} = \text{ maximum body temp in previous 24 hours}]\)
Ireton-Jones 1997 Equation

REE = (5 × weight) − (11 × age) + (244 if male) + (239 if trauma present) + (840 if burns present) + 1,784

[W = weight in kg; H = height in cm; A = age in years]

Swinamer 1990 Equation

REE = (945 × body surface area) − (6.4 × age) + (108 × temperature) + (24.2 × respiratory rate) + (817 × V_t) − 4,349

[V_t = tidal volume in liters]

Permissive Underfeeding Guidelines:
- 18–22 kcal/kg IBW
- 1.5–2.5 g protein/kg IBW

<table>
<thead>
<tr>
<th>Activity Factors</th>
<th>Average Injury Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of bed 1.2</td>
<td>Surgery 1.0–1.3</td>
</tr>
<tr>
<td>Confined to bed 1.1</td>
<td>Infection 1.0–1.4</td>
</tr>
<tr>
<td></td>
<td>Skeletal trauma 1.2–1.4</td>
</tr>
<tr>
<td></td>
<td>Head injury 1.5</td>
</tr>
</tbody>
</table>

Protein Requirements

- RDA 0.8 g protein/kg
- Minor surgery 1–1.1 g protein/kg
- Major surgery 1.2–1.5 g protein/kg
- Burn 1.5–2.0 g protein/kg
Hypocaloric Feeding

- Patients are fed below their resting energy expenditure (50%-75%) during critical illness
- Another term: metabolic support
 - Goals are to avoid
 - delayed gastric emptying
 - hyperglycemia with associated electrolyte abnormalities due to inability to utilize excess fuel

Avoid mandatory full caloric feeding in the first week but rather suggest low dose feeding (e.g., up to 500 calories per day), advancing only as tolerated (grade 2B)

Following major injury, patients lose a large amount of body protein via wound exudate and urine during the first 10 days following injury despite moderate nutrition support (~110g/d).

- Protein needs are therefore increased in this population.

20–25% of total nutrient intake should be protein (roughly 1.5–2.0 g/kg/day).

Vitamins and Minerals

- Currently, there are no specific guidelines regarding micronutrient requirements in the critically ill patient
 - Lacking objective data; future studies needed to address antioxidant supplementation in this population

Carbohydrate

- Hyperglycemia upon admission has been correlated to increased morbidity and mortality in trauma patients
 - Tight blood glucose control with insulin therapy may improve morbidity and mortality
 - Recommended that insulin be used to maintain normoglycemia
- Recommended that glucose be provided at a rate of 3 to 4 mg/kg/min or ~ 50 to 60% of total energy requirements in critically ill patients

Fat

- Facilitates protein sparing
- Decreases risk of carbohydrate overload
- Assists in limiting total fluid volume
- Provides essential fatty acids (EFAs)
Fat

- Recommendations in critically ill patients:
 - 10% to 30% of total energy requirements
 - Minimum of 2% to 4% as EFAs to prevent deficiency

- Hypermetabolic patients should be monitored for tolerance of fat delivery:
 - May decrease immune function
 - Cause hypertriglyceridemia
 - Cause hypoxemia due to impaired ventilation and perfusion abnormality

Omega-3 vs. Omega-6 fatty acids

- IV fat emulsion in the United States contain omega-6, long-chain triglycerides (LCT)
 - May be proinflammatory and immunosuppressive in critically ill patients
- Enteral formulations contain mixtures of LCT (omega-6 and omega-3) and medium-chain triglycerides (MCT)
 - Produce less proinflammatory metabolites
 - May be beneficial in critically ill patients
 - Upon ingestion, MCT directly absorbed via the portal blood system, bypassing the lymphatic system needed for LCT absorption

Early Enteral Nutrition

- Enteral feeding should be started early within the first 24–48 hours following admission (grade C)
- The feedings should be advanced to goal over the next 48–72 hours (grade E)
- Achieving access and initiating enteral nutrition (EN) should be considered as soon as patient is resuscitated and is hemodynamically stable

Enteral vs. Parenteral Nutrition

- Use intravenous glucose and EN rather than total parenteral nutrition (TPN) alone or PN in conjunction with enteral feeding in the first 7 days after a diagnosis of severe sepsis/septic shock (grade 2B)

Appendix

Grade of recommendation
A—Supported by at least two level I investigations
B—Supported by one level I investigation
C—Supported by level II investigations only
D—Supported by at least two level III investigations
E—Supported by level IV or level V evidence

Level of evidence
I—Large, randomized trials with clear-cut results; low risk of false-positive (alpha) error or false-negative (beta) error
II—Small, randomized trials with uncertain results; moderate to high risk of false-positive (alpha) and/or false-negative (beta) error
III—Nonrandomized, contemporaneous controls
IV—Nonrandomized, historical controls
V—Case series, uncontrolled studies, and expert opinion

Anyone have a recipe for these using cauliflower? (asking for a friend 😄)