Geisinger Assessment & Management of Orthopaedic Polytrauma

Yelena Bogdan, MD

The issues...

Outline

Evaluation of polytrauma Scoring systems Ortho urgencies and emergencies MOF, ARDS, physiologic response **Damage Control Orthopaedics** (DCO), evidence and modes Occult Hypoperfusion and Resuscitation Early Appropriate Care Timing of definitive fixation in DCO Geisinger

ATLS Primary Survey

- Airway
- Breathing
- Circulation
- Disability

- Exposure/Environmental Control

Secondary Survey Tertiary Survey Geisinger

- ATLS Primary Survey
 - Airway
 - Breathing
 - Circulation
 - Disability

Exposure/Environmental Control

Secondary Survey

Tertiary Survey

Primary Survey

- Circulation
 - Clinical + radiographic (Pelvic X-Ray)
 - Sheet / binder if needed
 - Direct pressure to areas of obvious hemorrhage
 - Initiation of resuscitation

Primary Survey

- Disability
 - Neuro evaluation
 - -Open Fx
 - -Displaced Fx
 - -Pelvis/Tab

Tertiary Survey

- Repeat physical exam
- Review of any additional labs and radiographs
- 12% injuries in polytrauma missed in first 24 hours
- Standardized tertiary survey has shown to decrease missed injuries by 36%

Geisinger

Chan RN, Ainscow D, Sikorski JM. Diagnostic failures in the multiple injured. *J Trauma*. 1980;20:684-687. Biffl WL, Harrington DT, Cioffi WG. Implementation of a tertiary survey decreases missed injuries. *J Trauma*. 2003;54:3

Tertiary Survey

- Repeat physical exam
- Review of any additional labs and radiographs
- 12% injuries in polytrauma missed in first 24 hours
- Standardized tertiary survey has shown to decrease missed injuries by 36%

Geisinger

Chan RN, Ainscow D, Sikorski JM. Diagnostic failures in the multiple injured. *J Trauma*. 1980;20:684-687. Biffl WL, Harrington DT, Cioffi WG. Implementation of a tertiary survey decreases missed injuries. *J Trauma*. 2003;54:3

Scoring Systems

Glasgow Coma Scale Abbreviated Injury Scale Injury Severity Score New Injury Severity Score

Scoring Systems

Glasgow Coma Scale <u>Abbreviated Injury Scale</u> <u>Injury Severity Score</u> New Injury Severity Score

Abbreviated Injury Scale (AIS)

9 anatomic areas:

- Head
- Face
- Neck
- Thorax
- Abdomen
- Spine
- Upper Extremity
- Lower Extremity
- External

Abbreviated Injury Scale (AIS)

Each area scored from 0 to 6 Values consensus driven Values found in "dictionary"

0 None 1 Minor 2 Moderate 3 Serious 4 Severe 5 Critical 6 Not survivable

Abbreviated Injury Scale

Examples:

- –Femur fracture → serious, AIS=3
- –Pulmonary contusion → serious, AIS=3
- −Flail chest→ severe, AIS=4

Calculated from AIS Highest AIS value from each individual anatomic area (6)

- Head/ neck
- Face
- Chest
- Abdomen
- Extremities including pelvis
- External

Three highest AIS values (from different anatomic areas)

- \rightarrow squared
- \rightarrow summed

 $AIS^2 + AIS^2 + AIS^2$

Highest Score: 75 (not survivable)

- AIS of 5 in three anatomic areas
- AIS of 6 in any anatomic area

Defines polytrauma

– ISS ≥ 18

Correlates with:

- Morbidity
- Mortality
- Length of hospital stay

A problem with ISS... injuries within the same anatomic system are only counted once!

ISS and Bilateral Femur Fractures

Bilateral Femur Fractures

- Independent risk
 factor for ARDS
- Historical mortality rates ~40%, recent 5.6%
- Treated with IMN at same setting

Cannada LK, Taghizadeh S, Murali J, et al. Retrograde intramedullary nailing in treatment of bilateral femur fractures. J Orthop Trauma. 2008;22:530-534.

Kobbe P, Micansky F, Lichte P et al. Increased morbidity and mortality after bilateral femoral shaft fractures: myth or reality in the era of damage control? Injury. 2013;44:221-225.

Life > Limb

- Orthopaedic urgencies and emergencies must be treated within overall context of polytraumatized pt's condition
- Care of orthopaedic
 injuries impacts mortality
- Early orthopaedic trauma involvement is essential

Orthopaedic Urgencies and Emergencies

- Unstable pelvic fractures
- Fractures or dislocations with associated vascular injuries, neurologic injuries, soft tissue compromise
- Compartment syndrome
- Spine injury with deficit
- Joint dislocations associated with avascular necrosis
- Open fractures

Unstable Pelvic Fractures

- Associated with significant transfusion requirements
- **Initial Treatment:**
 - Mechanical stabilization
 - Assessment of response to resuscitation
 - Angiography

- Pelvic Packing Manson T, O'Toole RV, Whitney A, et al. Young-Burgess classification of pelvic ring fractures: does it predict mortality, transfusion requirements, and non-orthopaedic injuries? J Orthop Trauma. 2010;24:603-609

Fractures w/Vascular Injury

Control Hemorrhage (pressure) **Realign limb / Splint** - Will often resolve issue **Further eval** (arteriogram) Ex-fix + vascular repair Ortho first

Elevated tissue pressure within a closed fascial space Reduces tissue perfusion→ischemia Results in cell death→ necrosis 8 hrs- irreversible changes <u>True Orthopaedic Emergency</u>

Fractures closed <u>and open</u> 2-10% tibia, 48% segmental, 53% medial knee fx dislocation

Fractures closed <u>and open</u> 2-10% tibia, 48% segmental, 53% medial knee fx dislocation

Blunt trauma

Fractures closed <u>and open</u> 2-10% tibia, 48% segmental, 53% medial knee fx dislocation Blunt trauma Temp vascular occlusion

Fractures closed and open 2-10% tibia, 48% segmental, 53% medial knee fx dislocation Blunt trauma Temp vascular occlusion Cast/dressing

Fractures closed and open 2-10% tibia, 48% segmental, 53% medial knee fx dislocation Blunt trauma Temp vascular occlusion Cast/dressing **Closure of fascial** defects

Fractures closed and open 2-10% tibia, 48% segmental, 53% medial knee fx dislocation Blunt trauma Temp vascular occlusion Cast/dressing Closure of fascial defects

Burns/Electrical Exertional states GSW IV/A-lines Hemophiliac/coag Intraosseous IV(infant) Snake bite Arterial injury

Initial Treatment

- Remove splint/dressing
- Elevate
- Check pressures
 - Delta P= SBP-CP
 - <30 →bad
 - Obtunded
- Fasciotomy

Dislocations

Urgency depends on joint Knee, elbow, hip > ankle, shoulder Potential neurologic/vascular sequelae

Initial treatment:

- Emergent Reduction
- Assessment of vascularity
 - Physical Exam
 - Ankle Brachial Index (ABI)
 - Arteriogram prn

Dislocations

Can be associated with avascular necrosis

- Emergent Reduction
- Do this in the OR for a native hip! (risk FN fx)

Dislocations

Associated with soft tissue compromise

- Emergent Reduction
- Still get Xrays first!

Why?

Open Fractures

Break in skin and underlying soft tissues leads directly into and communicates with the fracture and its hematoma Wound in same limb segment as

fracture

Prognosis depends on contamination, associated injuries and...

Open Fractures

Break in skin and underlying soft tissues leads directly into and communicates with the fracture and its hematoma

Wound in same limb segment as fracture

Prognosis depends on contamination, associated injuries and...

Classification: Gustilo and Anderson

Open Fx: Type I

Low energy injury

<1 cm long (only one aspect of the classification) Bone piercing from inside out Typically low level of bacterial contamination Minimal/no muscle damage

Open Fx: Type II

>1 to <10cm in length
Moderate soft tissue damage (higher energy injury)
Outside to inside pattern
Some necrotic muscle, minimal/moderate debridement required
None/minimal stripping, coverage

without grafts / flaps

Open Fx: Type III

- High energy, outside to inside pattern
- >10cm w/ extensive muscle devitalization
- Fracture widely displaced or comminuted
- Extensive wound contamination
- Subtypes
 - IIIA- can be covered primarily
 - IIIB- needs flap coverage
 - IIIC- vascular injury requiring repair

Open Fx: Type III

Additional factors

- Close range shotgun, high velocity (>2000ft/s) gunshot
- Segmental fx
- Diaphyseal segmental loss
- Farmyard / other highly contaminated environment
- Associated compartment syndrome

Open Fractures

The "Six Hour Rule"

- Timing of debridement generally has NOT been associated with infection
- OR ASAP after life threatening conditions treated and stabilized
- Early administration of antibiotics
 decreased rates of infection

Gelack WD, Karunakar MA, Angerame MR, et al. Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma. 2015;29:1-6. 44 Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;246:36-40.

What are we trying to avoid?

What are we trying to avoid?

Acute Respiratory Distress Syndrome (ARDS)

B/L infiltrates on CXR
PaO2/FiO2 < 200
High mortality
May be related to imbalance between proinflammatory and antiinflammatory mediators

Physiologic Response

Systemic Inflammatory Response (SIRS)

- Proinflammatory
 cytokine response (IL-6,
 IL-8, etc.)
- "Primed" PMNs
- Secondary tissue (lung) injury
- Predictive of ARDS

Physiologic Response

Systemic Inflammatory Response (SIRS)

- Components
 - <u>Fever</u>: T<34 or >38 (100.4 F)
 - <u>Tachycardia</u>: HR >90
 - <u>Hyperventilation</u>: RR > 20 (or PaCO2<33mmHg)
 - <u>Leukocytosis</u>: WBC <4,000 or >12,000

Physiologic Response

Damage Control Orthopaedics (DCO)

- Approach to treating polytrauma pts
- Goal: minimize impact of "second hit"

Damage Control Orthopaedics

Priorities

- Hemorrhage control
- Soft tissue management
- Provisional fracture stabilization

Definitive fixation delayed until physiology improved

History of DCO

Bone et al JBJS 1989→ *Early Total Care*

Prospective randomized study:

- Femur fractures treated < 24 hours
 VS
- Femur fractures treated > 48 hours

Early fixation in patients with an *ISS* ≥ 18 → decreased:

- Pulmonary complications
- ICU LOS
- Hospital LOS

History of DCO

Early 1990's: complications associated with ETC begin to be described

– ARDS – MOF

History of DCO

Pape et al: ETC may not be appropriate in some pts Alternative treatment strategy \rightarrow

"Damage Control Orthopaedics"

Geisinger

Do some patients not tolerate ETC?

Pape et al, 1993: retrospective study Polytrauma patients with femur fracture treated with IMN

Analyzed patients based upon

- chest injury (AIS thorax <2 versus AIS thorax ≥2)
- timing of fixation (<24hrs vs >24hrs)

Trend towards higher ARDS (33% vs 7.7%) in patients with severe chest injury managed acutely with IMN (not stat sig)

Pape HC, Aufm'Kolk M, Paffrath T, et al. J Trauma. 1993;34:540-547.

Intramedullary Nailing has physiologic effects...

- Blood loss
- Fluid loss
- Fat embolization
- Cytokine production
- Activation of coagulation system

DCO: Does it work?

Pape et al, J Trauma 2002

 Reduction in rates of ARDS and MOF over time with increased usage of DCO

Pape HC, Hildebrand F, Pertschy S, et al. Changes in the management of femoral shaft fractures in polytrauma patients: from early total care to damage control orthopedic surgery. *J Trauma*;200253:452-462.

Retrospective review; sub-analysis of pts undergoing DCO

- − 60 pts→ skeletal traction
- 19 pts → external fixation

Scannell BP, Waldrop NE, Sasser HC, et al. Skeletal traction versus external fixation in the initial temporization of femoral shaft fractures in severely injured patients. J Trauma. 2010;68:633-640.

Results:

- No difference
 between external
 fixation and skeletal
 traction in:
 - ARDS
 - MOF
 - Pneumonia

62 Scannell BP, Waldrop NE, Sasser HC, et al. Skeletal traction versus external fixation in the initial temporization of femoral shaft fractures in severely injured patients. *J Trauma*. 201

Problem with study: - Small number of pts, particularly in external fixation group→possibility of Type II error

63 Scannell BP, Waldrop NE, Sasser HC, et al. Skeletal traction versus external fixation in the initial temporization of femoral shaft fractures in severely injured patients. *J Trauma*. 2010

Concern with traction:

- Difficulty with pulmonary toilet?
- Increased narcotic requirements
- Increased risk FES (fat embolism)?

Scannell BP, Waldrop NE, Sasser HC, et al. Skeletal traction versus external fixation in the initial temporization of femoral shaft fractures in severely injured patients. J Trauma. 2010;68:633-640.

Potential issues with overutilization of DCO

- -Unnecessary delay in definitive treatment
- -Longer ICU stays
- -Longer time on ventilator
- -Longer LOS
- -Increased cost

ETC vs DCO: When?

Patient Risk Stratification

TABLE 9-5 Classification Systems for Clinical Patient Assessment

				Unstable	
	Parameter	Stable (Grade I)	(Grade II)	(Grade III)	In Extremis (Grade IV)
Shock	Blood pressure (mm Hg)	100 or more	80-100	60–90	<50-60
	Blood units (2 h)	0–2	2–8	5–15	>15
	Lactate levels	Normal range	Around 2.5	>2.5	Severe acidosis
	Base deficit (mmol/L)	Normal range	No data	No data	>6-8
	ATLS classification	1	11–111	111–IV	IV
Coagulation	Platelet count (µg/mL)	>110	90–110	<70–90	<70
	Factor II and V (%)	90–100	70–80	50–70	<50
	Fibrinogen (g/dL)	1	Around 1	<1	DIC
	D-dimer	Normal range	Abnormal	Abnormal	DIC
Temperature		<33°C	33–35°C	30–32°C	30°C or less
SoftTissue Injuries	Lung function; PaO_2/FiO_2	350–400	300–350	200–300	<200
	Chest trauma scores; AIS	AIS 1 or 2	AIS 2 or more	AIS 2 or more	AIS 3 or more
	Chest trauma score; TTS	0	I–II	-	IV
	Abdominal trauma (Moore)	< or = 11	< or = 111	111	or >
	Pelvic trauma (AO class.)	A type (AO)	B or C	С	C (crush, rollover abd.)
	Extremities	AIS I–II	AIS II–III	AIS III–IV	Crush, rollover extrem.

Borderline Patients

Severe abdominal injury

(AIS abdomen \geq 3)

Retrospective review of 3069 polytrauma patients treated for femur fracture with internal fixation

~50% relative risk reduction in mortality in patients treated after 12 hours

→ Benefited from delay

Morshed S, Miclau T, Bembom O, et al. J Bone Joint Surg Am. 2009;91:3-13.

Level I Data?

Impact of the Method of Initial Stabilization for Femoral Shaft Fractures in Patients With Multiple Injuries at Risk for Complications (Borderline Patients)

Hans-Christoph Pape, MD, FACS,* Dieter Rixen, MD,† John Morley, MD,‡ Elisabeth Ellingsen Husebye, MD,§ Michael Mueller, MD,¶ Clemens Dumont, MD,|||| Andreas Gruner, MD,|| Hans Joerg Oestern, MD,** Michael Bayeff-Filoff, MD,†† Christina Garving,*** Dustin Pardini, PhD,‡‡ Martijn van Griensven, PhD,§§ Christian Krettek, MD, FRACS,¶¶ Peter Giannoudis, MD,‡ and the EPOFF study group

 RCT comparing IMN (ETC) vs DCO in stable and borderline patients

Geisinger

69

Level I Data?

Impact of the Method of Initial Stabilization for Femoral Shaft Fractures in Patients With Multiple Injuries at Risk for Complications (Borderline Patients)

Hans-Christoph Pape, MD, FACS,* Dieter Rixen, MD,† John Morley, MD,‡ Elisabeth Ellingsen Husebye, MD,§ Michael Mueller, MD,¶ Clemens Dumont, MD,|||| Andreas Gruner, MD,|| Hans Joerg Oestern, MD,** Michael Bayeff-Filoff, MD,†† Christina Garving,*** Dustin Pardini, PhD,‡‡ Martijn van Griensven, PhD,§§ Christian Krettek, MD, FRACS,¶¶ Peter Giannoudis, MD,‡ and the EPOFF study group

- Stable Patients
- →acute IMN associated with decreased ventilator time

Level I Data?

Impact of the Method of Initial Stabilization for Femoral Shaft Fractures in Patients With Multiple Injuries at Risk for Complications (Borderline Patients)

Hans-Christoph Pape, MD, FACS,* Dieter Rixen, MD,† John Morley, MD,‡ Elisabeth Ellingsen Husebye, MD,§ Michael Mueller, MD,¶ Clemens Dumont, MD,|||| Andreas Gruner, MD,|| Hans Joerg Oestern, MD,** Michael Bayeff-Filoff, MD,†† Christina Garving,*** Dustin Pardini, PhD,‡‡ Martijn van Griensven, PhD,§§ Christian Krettek, MD, FRACS,¶¶ Peter Giannoudis, MD,‡ and the EPOFF study group

Borderline Patients

→acute IMN associated with increased acute lung injury (ALI)

 – 6.69x greater chance of developing ALI, s/p acute IMN (CI = 1.01-44.08)

Geisinger

71

Reamed vs. Unreamed?

Reamed Versus Unreamed Intramedullary Nailing of the Femur: Comparison of the Rate of ARDS in Multiple Injured Patients

By The Canadian Orthopaedic Trauma Society

- RCT
- 322 femur fractures
- IMN within 24 hours

Reamed vs. Unreamed?

Reamed Versus Unreamed Intramedullary Nailing of the Femur: Comparison of the Rate of ARDS in Multiple Injured Patients

By The Canadian Orthopaedic Trauma Society

- Reamed IMN→ 3/63 ARDS
- Unreamed IMN→ 2/46 ARDS
- 2 deaths in each group
- No statistically significant difference
- 39,817 patients would be needed to appropriately power study

Now what?

Is there another way of looking at orthopaedic trauma resuscitation? Geisinger 74

Evaluating Response to Resuscitation

Compensated Shock→

> Brain and heart perfused at expense of other organs

Occult hypoperfusion
 exists

Occult Hypoperfusion

Occult Hypoperfusion Is Associated with Increased Morbidity in Patients Undergoing Early Femur Fracture Fixation

Adam C. Crowl, MD, Jeffrey S. Young, MD, David M. Kahler, MD, Jeffrey A. Claridge, MD, David S. Chrzanowski, BS, and Michelle Pomphrey, RN

- Patients with ISS ≥ 18 + femur fracture stabilized within 24h
- No patients had clinical signs of shock:
 - Normotensive
 - Not Tachycardic
 - Adequate urine output

Occult Hypoperfusion

Occult Hypoperfusion Is Associated with Increased Morbidity in Patients Undergoing Early Femur Fracture Fixation

Adam C. Crowl, MD, Jeffrey S. Young, MD, David M. Kahler, MD, Jeffrey A. Claridge, MD, David S. Chrzanowski, BS, and Michelle Pomphrey, RN

Retrospectively divided into 2 groups based on lactate levels (normal and abnormal) Group with lactate > 2.5 had higher pulmonary and infectious complication rates

Resuscitation and Early Appropriate Care

Timing of Orthopaedic Surgery in Multiple Trauma Patients: Development of a Protocol for Early Appropriate Care

Heather A. Vallier, MD, Xiaofeng Wang, PhD, Timothy A. Moore, MD, John H. Wilber, MD, and John J. Como, MD

When is patient's physiology appropriate for definitive care?

- pH ≥7.25
- − Base excess \geq -5.5
- Lactate <4.0

Definitive care proceeds when any of these has been achieved

Resuscitation and Early Appropriate Care

Included femur fractures, axially unstable injuries (pelvis, acetabulum, spine)

Compared to historical cohort

Patients treated with EAC within 36 hours:

- 1.5% ARDS
- 0.37% MOF
- 1.5% Mortality
- Shorter ICU and total LOS, ventilation time

Vallier HA, Moore TA, et al. Complications are reduced with a protocol to standardize timing of fixation based on response to resuscitation. J Orthop Surg Res. 2015;10:155.

"Normalizing lactate"

Resuscitation Before Stabilization of Femoral Fractures Limits Acute Respiratory Distress Syndrome in Patients With Multiple Traumatic Injuries Despite Low Use of Damage Control Orthopedics

Robert V. O'Toole, MD, Michael O'Brien, MD, Thomas M. Scalea, MD, Nader Habashi, MD, Andrew N. Pollak, MD, and Clifford H. Turen, MD

- Retrospective review of protocol for treatment of femur fractures in polytrauma patients
- N=229; ISS≥17
- 88% patients treated with reamed IM nailing and 12% treated with DCO (External fixation)
- "Normalizing lactate" to <2.5 → parameter used to demonstrate adequate resuscitation

O'Toole RV, O'Brien M, Scalea T, et al. Resuscitation before stabilization of femoral fractures limits acute respiratory distress syndrome in patients with multiple traumatic injuries despite low use of damage control orthopedics. *J Trauma*. 2009;67:1013-1021.

"Normalizing lactate"

Resuscitation Before Stabilization of Femoral Fractures Limits Acute Respiratory Distress Syndrome in Patients With Multiple Traumatic Injuries Despite Low Use of Damage Control Orthopedics

Robert V. O'Toole, MD, Michael O'Brien, MD, Thomas M. Scalea, MD, Nader Habashi, MD, Andrew N. Pollak, MD, and Clifford H. Turen, MD

Results:

- ARDS (overall): 1.5%
- ARDS (pulmonary injured patients): 2.0%
- ARDS (pulm. injured patients with ISS>28): 3.3%

Compare extremely favorably to published series by Pape, Brundage, Bosse, Charash, Bone

O'Toole RV, O'Brien M, Scalea T, et al. Resuscitation before stabilization of femoral fractures limits acute respiratory distress syndrome in patients with multiple traumatic injuries despite low use of damage control orthopedics. *J Trauma*. 2009;67:1013-1021.

Measures of Resuscitation

Stable hemodynamics No hypoxemia Lactate

- < 2.5 mmol/L (Crowl et al)</pre>
- < 4.0 mmol/L (Vallier et al)</pre>
- "normalizing," toward 2.5 mmol/L (O'Toole)

Base Deficit

- <5.5 (Vallier et al), <5, <6

Serum Bicarbonate

- SB>24.7; SB>26.4 (Morshed et al)

pH > 7.25 (Vallier et al) Normal coags Normothermia

Normal U/O (>1cc/kg/hr)

Algorithm: ETC vs DCO

Major Secondary Surgery in Blunt Trauma Patients and Perioperative Cytokine Liberation: Determination of the Clinical Relevance of Biochemical Markers

Hans-Cristoph Pape, MD, Martijn van Griensven, PhD, John Rice, MD, Axel Gänsslen, MD, Frank Hildebrand, MD, Stefan Zech, MD, Markus Winny, MD, Ralf Lichtinghagen, MD, and Christian Krettek, MD

- Polytrauma pts managed with DCO followed by later definitive fixation
- Patients who converted @2-4 days were compared to those @5-8 days
- MODS 46% in early group versus 16% in late group

Geisinger

Pape HC, van Griensven M, Rice J, et al. Major secondary surgery in blunt trauma patients and perioperative cytokine li determination of the clinical relevance of biochemical markers. *J Trauma*. 2001;50:989-1000.

Alterations in the Systemic Inflammatory Response after Early Total Care and Damage Control Procedures for Femoral Shaft Fracture in Severely Injured Patients

Paul John Harwood, MB, ChB, Peter V. Giannoudis, MD, Martijn van Griensven, MD, Christian Krettek, MD, and Hans-Christoph Pape, MD

- Retrospective review: ISS>20 + femur fx
- N=174, initial ex-fix vs early IMN
- Ex fix group more severely injured
- SIRS score, modified Marshall multi-organ dysfunction score

Harwood JH, Giannoudis PV, van Griensven M, et al. Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. *J Trauma*. 2005;58:446-454.

Alterations in the Systemic Inflammatory Response after Early Total Care and Damage Control Procedures for Femoral Shaft Fracture in Severely Injured Patients

Paul John Harwood, MB, ChB, Peter V. Giannoudis, MD, Martijn van Griensven, MD, Christian Krettek, MD, and Hans-Christoph Pape, MD

 DCO patients converted from external fixator while SIRS score still elevated → most pronounced post op inflammatory response and organ failure rate

Harwood JH, Giannoudis PV, van Griensven M, et al. Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. *J Trauma*. 2005;58:446-454.

Majority of pts treated with DCO should probably wait until at least **post injury day 5** before definitive treatment

Summary

- Evaluation of polytrauma patient guided by ATLS.
- Identifying and treating orthopaedic urgencies and emergencies in the initial evaluation is critical in minimizing M&M.
- Knowledge of scoring systems necessary in managing polytrauma.

Summary

Identifying patients w/occult hypoperfusion necessary to minimize M&M.

Knowledge of Damage Control Orthopaedics and when to implement methods of DCO is critical.

Summary

- Majority of polytrauma pts with femur fx benefit from treatment within the first 36 hrs
- Further research will help clarify which patients can tolerate acute IMN and which patients should be treated with DCO

