

Vascular Trauma

LEON SALEM, MD GEISINGER HOLY SPIRIT HOSPITAL

Vascular Trauma - Goals

- Understand mechanisms and patterns of injury
- Diagnosis
 - Physical exam
 - Imaging
- Treatment options
- Specific injuries

Vascular Trauma

- Two main consequences
 - ► Hemorrhage
 - Ischemia
 - "It either bleeds too much or not enough"
- Unrecognized uncontrolled hemorrhage can lead to death
- Unrecognized untreated ischemia can lead to limb loss, stroke, bowel necrosis and multiple organ failure

- Most commonly by penetrating trauma
 - ► GSW >> stab wounds
- Blunt trauma

Pathophysiology

- Hemorrhage prime consequence
- Bleeding may be obvious or concealed
- Concealed bleeding
 - Chest
 - Abdomen
 - Pelvis
 - Buttocks
 - ► Thighs
 - Swallowed (facial trauma)

Pathophysiology

- Ischemia acute interruption of blood flow to limb or organ
- ▶ Inadequate O2 supply \rightarrow anaerobic metabolism \rightarrow lactic acidosis
- Inflammatory pathway activation
- Cell death
 - Skeletal muscle can recover after 3-6 hr
 - Peripheral nerves are more sensitive to ischemia
- Restoration of arterial supply may result in reperfusion injury

- Laceration (complete/incomplete transection) most common
- Bleeding more severe in partially transected vessels
 - Complete transection results in retraction and vasoconstriction
- Blunt trauma injures by crushing, distraction or shearing
- Results in vessel contusion that may extend to some distance

- Intimal flap may form
 - Thrombosis
 - Dissection
 - Rupture
- Thrombosis may propagate or embolize

- Bleeding may continue within a contained hematoma (pseudoaneurysm)
 - Pulsatile mass
 - Distal flow is usually preserved
 - Sometimes present late if undiagnosed
 - ► Risk of rupture

- Injury to adjacent vein may result in AV fistula
 - Rupture
 - Heart failure
 - Often present late

Diagnosis

- Physical exam most important
- Absence of hard signs of vascular injury virtually excludes vascular trauma
- Presence of hard signs mandates immediate action

Diagnosis

- Hard signs of vascular injury
 - Pulsatile bleeding
 - Expanding hematoma
 - Absent distal pulses
 - Cold, pale limb
 - Palpable thrill
 - Audible bruit
- Presence of hard signs mandates immediate operative intervention

Diagnosis

- Soft signs of vascular injury
 - Nerve deficit
 - History of bleeding at scene
 - Reduced but palpable pulse
 - Injury in proximity to major artery
- High velocity GSW, multiple fragments or blunt trauma may make diagnosis less obvious, requiring additional studies

Diagnostic Adjuncts

Pulse Oximetry – lower reading in one limb is suggestive but does not confirm or exclude vascular injury

Unhelpful

- Doppler Ultrasound presence of Doppler signal in a pulseless limb only gives false sense of security
 - Does not imply a less severe or urgent injury
- Duplex Ultrasound requires experience operator
 - Can detect intimal tears, thrombosis, pseudoaneurysm, AV fistula
 - Can be limited by hardware, dressing, pain

Arterial Pressure Measurements

- Bedside ABI measurement may be useful
- ABI<0.9 suggests major vessel disruption, acute thrombosis or lage intimal flaps
 - requires additional imaging
- Limitations branch artery disruption (e.g. profunda femoris), small intimal flaps, pseudoaneurysms, AVFs
- Less accurate in proximal injuries
- Does not assess the venous system

Conventional Angiography and CTA

- Conventional angiography was the gold standard
- Very low yield when performed to rule out injury (<5%)</p>
- Quality of CT has improved and supplanted invasive angio
- Exception patient with planned therapeutic endovascular procedure
 - CTA often used as a guide before angio

Imaging for Neck Injuries

- CTA can be used in place of angio, excluding those who should undergo immediate surgical exploration
- In absence of hard signs physical exam is unreliable for excluding arterial injury
 - Delayed neuro deficits can occur from missed injuries
- Angio sensitive and specific for vascular injury, but not cost effective
 - ▶ 3 million dollar per CNS event prevented

Imaging for Neck Injuries

- CTA very important in penetrating neck injuries
 - Evaluation of aerodigestive tract
 - 95% sensitivity and specificity for vascular injuries
 - Metal artifacts may limit utility
 - Useful for preoperative planning when patient is stable

Imaging for Thoracic Aortic Injuries

- CTA screening modality of choice for blunt aortic trauma
- Less useful in penetrating injuries to chest
- Penetrating wounds traversing the mediastinum are often lethal (heart / great vessel injury)
- Penetrating wounds outside mediastinum typically do not result in vascular injury
- CTA useful if missile trajectory crosses midline and can involve mediastinum
 - Aid in determining need for surgery, aerodigestive tract evaluation or angiography

Imaging for Penetrating Abdominal Vascular Injuries

- Penetrating vascular injuries rarely occur in isolation, usually accompanied with solid or hollow viscus injuries
- Patients with significant tenderness or hemodynamic instability require emergent laparotomy
- In stable patients with unreliable exam imaging should be considered to determine peritoneal violation
- CT is the imaging modality of choice
- Triple contrast CT (IV, PO, rectal) approaches 100% sensitivity, and negative predictive value

Conventional Angiography in Abdominal Trauma

- Reserved for patients treated non operatively
- Extravasation from kidney or liver injury angio with embolization has good results in bleeding control
- Diagnostic angio not as good as CT
 - Risk of missing bowel injury

Minimal Arterial Injury

- Small pseudoaneurysms, AVFs, intimal flaps
- Historically concern for delayed bleeding, embolization or acute occlusion
- Seen frequently with endovascular intervention
- Most are benign and less than 5% require later operative intervention
- In penetrating trauma, minimal arterial injuries seem to be of minimal clinical significance

Imaging for Penetrating Extremity Injuries

- ► In presence of hard signs of vascular injury –imaging not indicated
 - Possible exception hybrid trauma room (angio can be done without delay)
- With soft signs additional imaging
 - Incidence of major vascular injury is low
- Angio very sensitive , allows intervention
 - Has risks
- In a prospective study, CTA for patients with penetrating extremity trauma and soft signs had 100% sensitivity and specificity for detecting clinically significant arterial injuries

Imaging for Penetrating Extremity Injuries

- CTA can be safely used as initial diagnostic study in patients with penetrating extremity trauma with soft signs
- Limitations of CTA
 - Scatter from metallic artifact
 - Resolution detail at tibial or pedal level

Surgical Repair Options

Endovascular Options – Covered Stent

Endovascular Options -Embolization

Endovascular Options – Proximal Control

Penetrating Carotid Injuries

- Important factors to consider: type of injury, location, associated injuries to aerodigestive tract, neuro status
- Morbidity caused by 3 mechanisms:
 - ► Hemorrhage
 - Hematoma compressing airway
 - Brain ischemia (embolization or thrombosis)
- All patients should have CTA if stable

Zone II Penetrating Injuries

- Usually treated surgically easily accessible
- Prep leg for GSV harvest
- Endovascular repair may be considered

Zone I Penetrating Injuries

- Consider intrathoracic bleeding and/or need for intrathoracic vascular control
- Proximal control may be endovascular

Zone III Penetrating Injuries

- More difficult surgical exposure
- Exposure of base of skull
- Endovascular repair options

Surgical Approach to Carotid Injury

- Exploration of wound if platysma not violated no further intervention needed
- Simple puncture wound may be treated with direct repair, but may require patch angioplasty or interposition graft
- Total occluded carotid should be repaired if there is flow in the distal ICA
- Avoid Fogarty catheter intracranial rupture or carotid cavernous fistula
- Ligation when patient critically unstable or injury unrepairable

Treatment of Penetrating Extremity Arterial Injuries

- Control bleeding digital occlusion, tourniquet
- Proximal thigh injuries control of external iliac artery (division of inguinal ligament or retroperitoneal approach)
- Proximal axillo-subclavian wounds sternotomy or left anterior thoracotomy with clamping of subclavian artery.