Skip to main content

We’ve updated our Terms & Conditions and Privacy Policy. By using this site, you agree to these terms.

All Geisinger locations are open and providing patient care. Please arrive as scheduled for your appointment unless you hear from a member of your care team. We appreciate your patience if you experience any delays during your visit.

Geisinger, Medial EarlySign partnership one of seven entries chosen for final round

DANVILLE, Pa. – Geisinger has been selected as one of seven finalists in the Centers for Medicare & Medicaid (CMS) Artificial Intelligence Health Outcomes Challenge. 

Geisinger partnered with Medial EarlySign, a leader in machine learning-based solutions to aid in early detection and prevention of high-burden diseases, to use artificial intelligence (AI) and machine learning to predict unplanned hospital admissions, readmissions occurring soon after hospital discharge, and healthcare-associated complications. The two entities collaborated to develop models that predict the risk of these outcomes using Medicare administrative claims data.

“This partnership enabled cross-disciplinary collaboration where both Geisinger and Medial EarlySign leveraged their strong healthcare and data science expertise to solve problems that can help fundamentally transform the healthcare delivery system,” said Karen Murphy, Ph.D., R.N., Geisinger’s chief innovation officer and founding director of Geisinger’s Steele Institute for Health Innovation. “The types of predictive models and computer user interfaces developed through the CMS AI Health Outcomes Challenge have enormous potential to improve patient outcomes, enhance clinician satisfaction and reduce healthcare costs.”

“Along with Geisinger, being chosen as a finalist is an accomplishment we are humbled to receive,” said Ori Geva, co-founder and chief executive officer of Medial EarlySign. “Geisinger’s deep understanding and commitment to patient care augmented with our machine learning modeling allowed us to excel as a team. This challenge has proven to us the depth and value of our medical AI modeling framework and the power it gives our healthcare clients to handle complex clinical predictive modeling at scale.”

The CMS AI Health Outcomes Challenge launched in 2019 with more than 300 entities proposing AI solutions for predicting patient health outcomes for potential use by the CMS Center for Medicare and Medicaid Innovation. Submissions aimed to forecast a variety of outcomes, including unplanned admissions related to heart failure, pneumonia, chronic obstructive pulmonary disease, and various other high-risk conditions; and adverse events such as hospital-acquired infections, sepsis, and respiratory failure. 

CMS evaluated each submission based on the model’s performance and how well innovators visually demonstrated how clinicians could use their model forecasts to improve patient care and outcomes. Clinicians from the American Academy of Family Physicians, a CMS partner in the AI Challenge, reviewed and evaluated the visual displays, and a panel of CMS senior leadership reviewed the assessments and selected the seven finalists.

In the final stage of the competition, the finalists will further refine their predictive models while addressing implicit algorithmic biases that impact health disparities. CMS will announce the grand prize winner and runner-up by the end of April 2021. 

For more information on Geisinger’s work with artificial intelligence and machine learning, visit

About Medial EarlySign™
Medial EarlySign helps healthcare systems keep patients healthier longer. EarlySign accelerates the successful use of AI and Machine Learning solutions within clinical workflows with insights driven from real world data allowing early detection and prevention of high-burden complications and conditions. With a focus on better outcomes and reduced costs, EarlySign partners with clients to deploy one or more of its pre-built,  outcome-focused  solutions (AlgoMarkers™) for augmenting early detection of cancers, indicating chronic diseases progression and deterioration, stratifying risks for unplanned admissions and adverse events and complications from infectious diseases. EarlySign also partners to co-develop custom predictive models using its AI Framework and rich clinical data expertise. The company’s machine learning results has been supported by peer-reviewed research published by internationally recognized health organizations and hospitals. Founded in 2009, Medial EarlySign is headquartered in Israel and the US. For more information, please visit us at Follow Medial EarlySign on LinkedIn and Twitter.

About Geisinger
Geisinger is among the nation’s leading providers of value-based care, serving 1.2 million people in urban and rural communities across Pennsylvania. Founded in 1915 by philanthropist Abigail Geisinger, the nonprofit system generates $10 billion in annual revenues across 126 care sites — including 10 hospital campuses — and Geisinger Health Plan, with more than half a million members in commercial and government plans. Geisinger College of Health Sciences educates more than 5,000 medical professionals annually and conducts more than 1,400 clinical research studies. With 26,000 employees, including 1,700 employed physicians, Geisinger is among Pennsylvania’s largest employers with an estimated economic impact of $15 billion to the state’s economy. On March 31, 2024, Geisinger became the first member of Risant Health, a new nonprofit charitable organization created to expand and accelerate value-based care across the country. Learn more at or follow on Facebook, Instagram, LinkedIn and X.

geisinger placeholder

For media inquiries:

Ashley Andyshak Hayes
Marketing Strategist
Marketing & Communications


Content from General Links with modal content